Java并发编程

Java并发编程相关

本文整理自JavaGuide

什么是线程和进程?

何为进程?

进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。

在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。

何为线程?

线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的方法区资源,但每个线程有自己的程序计数器虚拟机栈本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。

Java 程序天生就是多线程程序,我们可以通过 JMX 来看看一个普通的 Java 程序有哪些线程,代码如下。

1
2
3
4
5
6
7
8
9
10
11
12
public class MultiThread {
public static void main(String[] args) {
// 获取 Java 线程管理 MXBean
ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
// 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息
ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);
// 遍历线程信息,仅打印线程 ID 和线程名称信息
for (ThreadInfo threadInfo : threadInfos) {
System.out.println("[" + threadInfo.getThreadId() + "] " + threadInfo.getThreadName());
}
}
}

上述程序输出如下(输出内容可能不同,不用太纠结下面每个线程的作用,只用知道 main 线程执行 main 方法即可):

1
2
3
4
5
[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口

从上面的输出内容可以看出:一个 Java 程序的运行是 main 线程和多个其他线程同时运行


同步和异步的区别

  • 同步:发出一个调用之后,在没有得到结果之前, 该调用就不可以返回,一直等待。
  • 异步:调用在发出之后,不用等待返回结果,该调用直接返回。

为什么要使用多线程?

先从总体上来说:

  • 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。
  • 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。

再深入到计算机底层来探讨:

  • 单核时代:在单核时代多线程主要是为了提高单进程利用 CPU 和 IO 系统的效率。 假设只运行了一个 Java 进程的情况,当我们请求 IO 的时候,如果 Java 进程中只有一个线程,此线程被 IO 阻塞则整个进程被阻塞。CPU 和 IO 设备只有一个在运行,那么可以简单地说系统整体效率只有 50%。当使用多线程的时候,一个线程被 IO 阻塞,其他线程还可以继续使用 CPU。从而提高了 Java 进程利用系统资源的整体效率。
  • 多核时代: 多核时代多线程主要是为了提高进程利用多核 CPU 的能力。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,不论系统有几个 CPU 核心,都只会有一个 CPU 核心被利用到。而创建多个线程,这些线程可以被映射到底层多个 CPU 上执行,在任务中的多个线程没有资源竞争的情况下,任务执行的效率会有显著性的提高,约等于(单核时执行时间/CPU 核心数)。

说说线程的生命周期和状态?

Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态:

  • NEW: 初始状态,线程被创建出来但没有被调用 start()
  • RUNNABLE: 运行状态,线程被调用了 start()等待运行的状态。
  • BLOCKED:阻塞状态,需要等待锁释放。
  • WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
  • TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
  • TERMINATED:终止状态,表示该线程已经运行完毕。

线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。

什么是线程死锁?如何避免死锁?

认识线程死锁

线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。

死锁发生在两个或多个线程相互等待对方释放资源的情况下。

代码示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class DeadLockTest01 {
public static final Object resource1 = new Object();
public static final Object resource2 = new Object();

public static void main(String[] args) {

new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "获取资源1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(Thread.currentThread() + "等待获取资源2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "获取资源2");
}
}
}, "线程1").start();

new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "获取资源2");
try {/
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(Thread.currentThread() + "等待获取资源1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "获取资源1");
}
}
}, "线程2").start();
}
}

输出结果:

1
2
3
4
Thread[线程1,5,main]获取资源1
Thread[线程2,5,main]获取资源2
Thread[线程1,5,main]等待获取资源2
Thread[线程2,5,main]等待获取资源1

发生死锁的四个必要条件:

  • 互斥条件:该资源任意一个时刻只由一个线程占用。
  • 请求与保持条件:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
  • 不可剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
  • 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源关系。

如何预防和避免线程死锁?

破坏死锁的产生的必要条件即可:

  1. 破坏请求与保持条件:一次性申请所有的资源。
  2. 破坏不剥夺条件:占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
  3. 破坏循环等待条件:靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。

如何避免死锁?

避免死锁就是在资源分配时,借助于算法(比如银行家算法)对资源分配进行计算评估,使其进入安全状态。

安全状态 指的是系统能够按照某种线程推进顺序(P1、P2、P3…..Pn)来为每个线程分配所需资源,直到满足每个线程对资源的最大需求,使每个线程都可顺利完成。称 <P1、P2、P3…..Pn> 序列为安全序列。

修改线程2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "获取资源1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(Thread.currentThread() + "等待获取资源2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "获取资源2");
}
}
}, "线程2").start();

输出结果如下:

1
2
3
4
5
6
7
8
Thread[线程1,5,main]获取资源1
Thread[线程1,5,main]等待获取资源2
Thread[线程1,5,main]获取资源2
Thread[线程2,5,main]获取资源1
Thread[线程2,5,main]等待获取资源2
Thread[线程2,5,main]获取资源2

Process finished with exit code 0

线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。

sleep() 方法和 wait() 方法对比

共同点:两者都可以暂停线程的执行。

区别

  • sleep() 方法没有释放锁,而 wait() 方法释放了锁
  • wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。
  • wait() 方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒,或者也可以使用 wait(long timeout) 超时后线程会自动苏醒。
  • sleep()Thread 类的静态本地方法,wait() 则是 Object 类的本地方法。为什么这样设计呢?

可以直接调用 Thread 类的 run 方法吗?

new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。

总结:调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。


什么是 JMM?为什么需要 JMM?

一般来说,编程语言也可以直接复用操作系统层面的内存模型。不过,不同的操作系统内存模型不同。如果直接复用操作系统层面的内存模型,就可能会导致同样一套代码换了一个操作系统就无法执行了。Java 语言是跨平台的,它需要自己提供一套内存模型以屏蔽系统差异。

这只是 JMM 存在的其中一个原因。实际上,对于 Java 来说,你可以把 JMM 看作是 Java 定义的并发编程相关的一组规范,除了抽象了线程和主内存之间的关系之外,其还规定了从 Java 源代码到 CPU 可执行指令的这个转化过程要遵守哪些和并发相关的原则和规范,其主要目的是为了简化多线程编程,增强程序可移植性的。

为什么要遵守这些并发相关的原则和规范呢? 这是因为并发编程下,像 CPU 多级缓存和指令重排这类设计可能会导致程序运行出现一些问题。就比如说我们上面提到的指令重排序就可能会让多线程程序的执行出现问题,为此,JMM 抽象了 happens-before 原则(后文会详细介绍到)来解决这个指令重排序问题。

JMM 说白了就是定义了一些规范来解决这些问题,开发者可以利用这些规范更方便地开发多线程程序。对于 Java 开发者说,你不需要了解底层原理,直接使用并发相关的一些关键字和类(比如 volatilesynchronized、各种 Lock)即可开发出并发安全的程序。

你可以把 JMM 看作是 Java 定义的并发编程相关的一组规范,除了抽象了线程和主内存之间的关系之外,其还规定了从 Java 源代码到 CPU 可执行指令的这个转化过程要遵守哪些和并发相关的原则和规范,其主要目的是为了简化多线程编程,增强程序可移植性的。


happens-before 原则是什么?

  • 为了对编译器和处理器的约束尽可能少,只要不改变程序的执行结果(单线程程序和正确执行的多线程程序),编译器和处理器怎么进行重排序优化都行。
  • 对于会改变程序执行结果的重排序,JMM 要求编译器和处理器必须禁止这种重排序。

了解了 happens-before 原则的设计思想,我们再来看看 JSR-133 对 happens-before 原则的定义:

  • 如果一个操作 happens-before 另一个操作,那么第一个操作的执行结果将对第二个操作可见,并且第一个操作的执行顺序排在第二个操作之前。
  • 两个操作之间存在 happens-before 关系,并不意味着 Java 平台的具体实现必须要按照 happens-before 关系指定的顺序来执行。如果重排序之后的执行结果,与按 happens-before 关系来执行的结果一致,那么 JMM 也允许这样的重排序。

我们看下面这段代码:

1
2
3
int userNum = getUserNum(); 	// 1
int teacherNum = getTeacherNum(); // 2
int totalNum = userNum + teacherNum; // 3
  • 1 happens-before 2
  • 2 happens-before 3
  • 1 happens-before 3

虽然 1 happens-before 2,但对 1 和 2 进行重排序不会影响代码的执行结果,所以 JMM 是允许编译器和处理器执行这种重排序的。但 1 和 2 必须是在 3 执行之前,也就是说 1,2 happens-before 3 。

happens-before 原则表达的意义其实并不是一个操作发生在另外一个操作的前面,虽然这从程序员的角度上来说也并无大碍。更准确地来说,它更想表达的意义是前一个操作的结果对于后一个操作是可见的,无论这两个操作是否在同一个线程里。


并发编程三个重要特性

原子性

一次操作或者多次操作,要么所有的操作全部都得到执行并且不会受到任何因素的干扰而中断,要么都不执行。

在 Java 中,可以借助synchronized、各种 Lock 以及各种原子类实现原子性。

synchronized 和各种 Lock 可以保证任一时刻只有一个线程访问该代码块,因此可以保障原子性。各种原子类是利用 CAS (compare and swap) 操作(可能也会用到 volatile或者final关键字)来保证原子操作。

可见性

当一个线程对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。

在 Java 中,可以借助synchronizedvolatile 以及各种 Lock 实现可见性。

如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

有序性

由于指令重排序问题,代码的执行顺序未必就是编写代码时候的顺序。

我们上面讲重排序的时候也提到过:

指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致 ,所以在多线程下,指令重排序可能会导致一些问题。

在 Java 中,volatile 关键字可以禁止指令进行重排序优化。


volatile 关键字

如何保证变量的可见性?

在 Java 中,volatile 关键字可以保证变量的可见性,如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

JMM(Java 内存模型)强制在主存中进行读取

volatile 关键字其实并非是 Java 语言特有的,在 C 语言里也有,它最原始的意义就是禁用 CPU 缓存。如果我们将一个变量使用 volatile 修饰,这就指示 编译器,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。

volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。

如何禁止指令重排序?

在 Java 中,volatile 关键字除了可以保证变量的可见性,还有一个重要的作用就是防止 JVM 的指令重排序。 如果我们将变量声明为 volatile ,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。

在 Java 中,Unsafe 类提供了三个开箱即用的内存屏障相关的方法,屏蔽了操作系统底层的差异:

1
2
3
public native void loadFence();
public native void storeFence();
public native void fullFence();

理论上来说,你通过这三个方法也可以实现和volatile禁止重排序一样的效果,只是会麻烦一些。

下面我以一个常见的面试题为例讲解一下 volatile 关键字禁止指令重排序的效果。

面试中面试官经常会说:“单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理呗!”

双重校验锁实现对象单例(线程安全)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Singleton {

private volatile static Singleton uniqueInstance;

private Singleton() {
}

public static Singleton getUniqueInstance() {
//先判断对象是否已经实例过,没有实例化过才进入加锁代码
if (uniqueInstance == null) {
//类对象加锁
synchronized (Singleton.class) {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
}
}
return uniqueInstance;
}
}

uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

  1. uniqueInstance 分配内存空间
  2. 初始化 uniqueInstance
  3. uniqueInstance 指向分配的内存地址

但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。

volatile 可以保证原子性么?

volatile 关键字能保证变量的可见性,但不能保证对变量的操作是原子性的。

我们通过下面的代码即可证明:

正常情况下,运行上面的代码理应输出 2500。但你真正运行了上面的代码之后,你会发现每次输出结果都小于 2500

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
* 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册
*
* @author Guide哥
* @date 2022/08/03 13:40
**/
public class VolatoleAtomicityDemo {
public volatile static int inc = 0;

public void increase() {
inc++;
}

public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newFixedThreadPool(5);
VolatoleAtomicityDemo volatoleAtomicityDemo = new VolatoleAtomicityDemo();
for (int i = 0; i < 5; i++) {
threadPool.execute(() -> {
for (int j = 0; j < 500; j++) {
volatoleAtomicityDemo.increase();
}
});
}
// 等待1.5秒,保证上面程序执行完成
Thread.sleep(1500);
System.out.println(inc);
threadPool.shutdown();
}
}

为什么会出现这种情况呢?不是说好了,volatile 可以保证变量的可见性嘛!

也就是说,如果 volatile 能保证 inc++ 操作的原子性的话。每个线程中对 inc 变量自增完之后,其他线程可以立即看到修改后的值。5 个线程分别进行了 500 次操作,那么最终 inc 的值应该是 5*500=2500。

很多人会误认为自增操作 inc++ 是原子性的,实际上,inc++ 其实是一个复合操作,包括三步:

  1. 读取 inc 的值。
  2. 对 inc 加 1。
  3. 将 inc 的值写回内存。

volatile 是无法保证这三个操作是具有原子性的,有可能导致下面这种情况出现:

  1. 线程 1 对 inc 进行读取操作之后,还未对其进行修改。线程 2 又读取了 inc的值并对其进行修改(+1),再将inc 的值写回内存。
  2. 线程 2 操作完毕后,线程 1 对 inc的值进行修改(+1),再将inc 的值写回内存。

这也就导致两个线程分别对 inc 进行了一次自增操作后,inc 实际上只增加了 1。

其实,如果想要保证上面的代码运行正确也非常简单,利用 synchronizedLock或者AtomicInteger都可以。

使用 synchronized 改进:

1
2
3
public synchronized void increase() {
inc++;
}

使用 AtomicInteger 改进:

1
2
3
4
5
public AtomicInteger inc = new AtomicInteger();

public void increase() {
inc.getAndIncrement();
}

使用 ReentrantLock 改进:

1
2
3
4
5
6
7
8
9
Lock lock = new ReentrantLock();
public void increase() {
lock.lock();
try {
inc++;
} finally {
lock.unlock();
}
}

乐观锁和悲观锁

什么是悲观锁?

悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程

像 Java 中synchronizedReentrantLock等独占锁就是悲观锁思想的实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
public void performSynchronisedTask() {
synchronized (this) {
// 需要同步的操作
}
}

private Lock lock = new ReentrantLock();
lock.lock();
try {
// 需要同步的操作
} finally {
lock.unlock();
}

高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行。

什么是乐观锁?

乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其它线程修改了(具体方法可以使用版本号机制或 CAS 算法)。

在 Java 中java.util.concurrent.atomic包下面的原子变量类(比如AtomicIntegerLongAdder)就是使用了乐观锁的一种实现方式 CAS 实现的。

JUC原子类概览

1
2
3
4
// LongAdder 在高并发场景下会比 AtomicInteger 和 AtomicLong 的性能更好
// 代价就是会消耗更多的内存空间(空间换时间)
LongAdder sum = new LongAdder();
sum.increment();

高并发的场景下,乐观锁相比悲观锁来说,不存在锁竞争造成线程阻塞,也不会有死锁的问题,在性能上往往会更胜一筹。但是,如果冲突频繁发生(写占比非常多的情况),会频繁失败和重试,这样同样会非常影响性能,导致 CPU 飙升。

不过,大量失败重试的问题也是可以解决的,像我们前面提到的 LongAdder以空间换时间的方式就解决了这个问题。

理论上来说:

  • 悲观锁通常多用于写比较多的情况下(多写场景,竞争激烈),这样可以避免频繁失败和重试影响性能,悲观锁的开销是固定的。不过,如果乐观锁解决了频繁失败和重试这个问题的话(比如LongAdder),也是可以考虑使用乐观锁的,要视实际情况而定。
  • 乐观锁通常用于写比较少的情况下(多读场景,竞争较少),这样可以避免频繁加锁影响性能。不过,乐观锁主要针对的对象是单个共享变量(参考java.util.concurrent.atomic包下面的原子变量类)。

如何实现乐观锁?

乐观锁一般会使用版本号机制或 CAS 算法实现,CAS 算法相对来说更多一些,这里需要格外注意。

版本号机制

一般是在数据表中加上一个数据版本号 version 字段,表示数据被修改的次数。当数据被修改时,version 值会加一。当线程 A 要更新数据值时,在读取数据的同时也会读取 version 值,在提交更新时,若刚才读取到的 version 值为当前数据库中的 version 值相等时才更新,否则重试更新操作,直到更新成功。

举一个简单的例子:假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

  1. 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
  2. 在操作员 A 操作的过程中,操作员 B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
  3. 操作员 A 完成了修改工作,将数据版本号( version=1 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本等于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
  4. 操作员 B 完成了操作,也将版本号( version=1 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 1 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须等于当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

这样就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员 A 的操作结果的可能。

CAS 算法

CAS 的全称是 Compare And Swap(比较与交换) ,用于实现乐观锁,被广泛应用于各大框架中。CAS 的思想很简单,就是用一个预期值和要更新的变量值进行比较,两值相等才会进行更新。

CAS 是一个原子操作,底层依赖于一条 CPU 的原子指令。

原子操作 即最小不可拆分的操作,也就是说操作一旦开始,就不能被打断,直到操作完成。

CAS 涉及到三个操作数:

  • V:要更新的变量值(Var)
  • E:预期值(Expected)
  • N:拟写入的新值(New)

当且仅当 V 的值等于 E 时,CAS 通过原子方式用新值 N 来更新 V 的值。如果不等,说明已经有其它线程更新了 V,则当前线程放弃更新。

举一个简单的例子:线程 A 要修改变量 i 的值为 6,i 原值为 1(V = 1,E=1,N=6,假设不存在 ABA 问题)。

  1. i 与 1 进行比较,如果相等, 则说明没被其他线程修改,可以被设置为 6 。
  2. i 与 1 进行比较,如果不相等,则说明被其他线程修改,当前线程放弃更新,CAS 操作失败。

当多个线程同时使用 CAS 操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。

Java 语言并没有直接实现 CAS,CAS 相关的实现是通过 C++ 内联汇编的形式实现的(JNI 调用)。因此, CAS 的具体实现和操作系统以及 CPU 都有关系。

sun.misc包下的Unsafe类提供了compareAndSwapObjectcompareAndSwapIntcompareAndSwapLong方法来实现的对Objectintlong类型的 CAS 操作

1
2
3
4
5
6
7
8
9
10
11
12
13
/**
* CAS
* @param o 包含要修改field的对象
* @param offset 对象中某field的偏移量
* @param expected 期望值
* @param update 更新值
* @return true | false
*/
public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object update);

public final native boolean compareAndSwapInt(Object o, long offset, int expected,int update);

public final native boolean compareAndSwapLong(Object o, long offset, long expected, long update);

关于 Unsafe 类的详细介绍可以看这篇文章:Java 魔法类 Unsafe 详解 - JavaGuide - 2022open in new window

乐观锁存在哪些问题?

ABA 问题是乐观锁最常见的问题。

ABA 问题

如果一个变量 V 初次读取的时候是 A 值,并且在准备赋值的时候检查到它仍然是 A 值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回 A,那 CAS 操作就会误认为它从来没有被修改过。这个问题被称为 CAS 操作的 “ABA”问题。

ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。JDK 1.5 以后的 AtomicStampedReference 类就是用来解决 ABA 问题的,其中的 compareAndSet() 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

1
2
3
4
5
6
7
8
9
10
11
12
public boolean compareAndSet(V   expectedReference,
V newReference,
int expectedStamp,
int newStamp) {
Pair<V> current = pair;
return
expectedReference == current.reference &&
expectedStamp == current.stamp &&
((newReference == current.reference &&
newStamp == current.stamp) ||
casPair(current, Pair.of(newReference, newStamp)));
}

循环时间长开销大

CAS 经常会用到自旋操作来进行重试,也就是不成功就一直循环执行直到成功。如果长时间不成功,会给 CPU 带来非常大的执行开销。

如果 JVM 能支持处理器提供的 pause 指令那么效率会有一定的提升,pause 指令有两个作用:

  1. 可以延迟流水线执行指令,使 CPU 不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。
  2. 可以避免在退出循环的时候因内存顺序冲而引起 CPU 流水线被清空,从而提高 CPU 的执行效率。

只能保证一个共享变量的原子操作

CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5 开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。

synchronized 关键字

synchronized 是什么?有什么用?

synchronized 是 Java 中的一个关键字,翻译成中文是同步的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

在 Java 早期版本中,synchronized 属于 重量级锁,效率低下。这是因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。

不过,在 Java 6 之后, synchronized 引入了大量的优化如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销,这些优化让 synchronized 锁的效率提升了很多。因此, synchronized 还是可以在实际项目中使用的,像 JDK 源码、很多开源框架都大量使用了 synchronized


如何使用 synchronized?

synchronized 关键字的使用方式主要有下面 3 种:

  1. 修饰实例方法
  2. 修饰静态方法
  3. 修饰代码块

1、修饰实例方法 (锁当前对象实例)

给当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁

1
2
3
synchronized void method() {
//业务代码
}

2、修饰静态方法 (锁当前类)

给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁

这是因为静态成员不属于任何一个实例对象,归整个类所有,不依赖于类的特定实例,被类的所有实例共享。

1
2
3
synchronized static void method() {
//业务代码
}

静态 synchronized 方法和非静态 synchronized 方法之间的调用互斥么?不互斥!如果一个线程 A 调用一个实例对象的非静态 synchronized 方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁。

3、修饰代码块 (锁指定对象/类)

对括号里指定的对象/类加锁:

  • synchronized(object) 表示进入同步代码库前要获得 给定对象的锁
  • synchronized(类.class) 表示进入同步代码前要获得 给定 Class 的锁
1
2
3
synchronized(this) {
//业务代码
}

总结:

  • synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁;
  • synchronized 关键字加到实例方法上是给对象实例上锁;
  • 尽量不要使用 synchronized(String a) 因为 JVM 中,字符串常量池具有缓存功能。

synchronized 底层原理了解吗?

synchronized 关键字底层原理属于 JVM 层面的东西。

synchronized 同步语句块的情况

1
2
3
4
5
6
7
public class SynchronizedDemo {
public void method() {
synchronized (this) {
System.out.println("synchronized 代码块");
}
}
}

通过 JDK 自带的 javap 命令查看 SynchronizedDemo 类的相关字节码信息:首先切换到类的对应目录执行 javac SynchronizedDemo.java 命令生成编译后的 .class 文件,然后执行javap -c -s -v -l SynchronizedDemo.class

synchronized关键字原理

从上面我们可以看出:**synchronized 同步语句块的实现使用的是 monitorentermonitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。**

上面的字节码中包含一个 monitorenter 指令以及两个 monitorexit 指令,这是为了保证锁在同步代码块代码正常执行以及出现异常的这两种情况下都能被正确释放。

当执行 monitorenter 指令时,线程试图获取锁也就是获取 对象监视器 monitor 的持有权。

在 Java 虚拟机(HotSpot)中,Monitor 是基于 C++实现的,由ObjectMonitoropen in new window实现的。每个对象中都内置了一个 ObjectMonitor对象。

另外,wait/notify等方法也依赖于monitor对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify等方法,否则会抛出java.lang.IllegalMonitorStateException的异常的原因。

在执行monitorenter时,会尝试获取对象的锁,如果锁的计数器为 0 则表示锁可以被获取,获取后将锁计数器设为 1 也就是加 1。

执行 monitorenter 获取锁

对象锁的的拥有者线程才可以执行 monitorexit 指令来释放锁。在执行 monitorexit 指令后,将锁计数器设为 0,表明锁被释放,其他线程可以尝试获取锁。

执行 monitorexit 释放锁

如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

synchronized 修饰方法的的情况

1
2
3
4
5
public class SynchronizedDemo2 {
public synchronized void method() {
System.out.println("synchronized 方法");
}
}

synchronized关键字原理

synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。JVM 通过该 ACC_SYNCHRONIZED 访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。

如果是实例方法,JVM 会尝试获取实例对象的锁。如果是静态方法,JVM 会尝试获取当前 class 的锁。

总结

synchronized 同步代码块的实现使用的是 monitorentermonitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。

synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取而代之的确是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法。

不过两者的本质都是对对象监视器 monitor 的获取。

相关推荐:Java 锁与线程的那些事 - 有赞技术团队open in new window


synchronized 和 volatile 有什么区别?

synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!

  • volatile 关键字是线程同步的轻量级实现,所以 volatile性能肯定比synchronized关键字要好 。但是 volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块 。
  • volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
  • volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。

ReentrantLock

ReentrantLock 是什么?

ReentrantLock 实现了 Lock 接口,是一个可重入且独占式的锁,和 synchronized 关键字类似。不过,ReentrantLock 更灵活、更强大,增加了轮询、超时、中断、公平锁和非公平锁等高级功能。

1
public class ReentrantLock implements Lock, java.io.Serializable {}

ReentrantLock 里面有一个内部类 SyncSync 继承 AQS(AbstractQueuedSynchronizer),添加锁和释放锁的大部分操作实际上都是在 Sync 中实现的。Sync 有公平锁 FairSync 和非公平锁 NonfairSync 两个子类。


ReentrantLock 默认使用非公平锁,也可以通过构造器来显式的指定使用公平锁。

1
2
3
4
// 传入一个 boolean 值,true 时为公平锁,false 时为非公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}

从上面的内容可以看出, ReentrantLock 的底层就是由 AQS 来实现的。关于 AQS 的相关内容推荐阅读 AQS 详解open in new window 这篇文章

AQS 核心思想

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是基于 CLH 锁 (Craig, Landin, and Hagersten locks) 实现的。

CLH 锁是对自旋锁的一种改进,是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系),暂时获取不到锁的线程将被加入到该队列中。AQS 将每条请求共享资源的线程封装成一个 CLH 队列锁的一个结点(Node)来实现锁的分配。在 CLH 队列锁中,一个节点表示一个线程,它保存着线程的引用(thread)、 当前节点在队列中的状态(waitStatus)、前驱节点(prev)、后继节点(next)。


公平锁和非公平锁有什么区别?

  • 公平锁 : 锁被释放之后,先申请的线程先得到锁。性能较差一些,因为公平锁为了保证时间上的绝对顺序,上下文切换更频繁。
  • 非公平锁:锁被释放之后,后申请的线程可能会先获取到锁,是随机或者按照其他优先级排序的。性能更好,但可能会导致某些线程永远无法获取到锁。

synchronized 和 ReentrantLock 有什么区别?

两者都是可重入锁

可重入锁 也叫递归锁,指的是线程可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果是不可重入锁的话,就会造成死锁。

JDK 提供的所有现成的 Lock 实现类,包括 synchronized 关键字锁都是可重入的。

在下面的代码中,method1()method2()都被 synchronized 关键字修饰,method1()调用了method2()

1
2
3
4
5
6
7
8
9
10
public class SynchronizedDemo {
public synchronized void method1() {
System.out.println("方法1");
method2();
}

public synchronized void method2() {
System.out.println("方法2");
}
}

由于 synchronized锁是可重入的,同一个线程在调用method1() 时可以直接获得当前对象的锁,执行 method2() 的时候可以再次获取这个对象的锁,不会产生死锁问题。假如synchronized是不可重入锁的话,由于该对象的锁已被当前线程所持有且无法释放,这就导致线程在执行 method2()时获取锁失败,会出现死锁问题。

synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API

synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。

ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

ReentrantLock 比 synchronized 增加了一些高级功能

相比synchronizedReentrantLock增加了一些高级功能。主要来说主要有三点:

  • 等待可中断 : ReentrantLock提供了一种能够中断等待锁的线程的机制,通过 lock.lockInterruptibly() 来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
  • 可实现公平锁 : ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来制定是否是公平的。
  • 可实现选择性通知(锁可以绑定多个条件): synchronized关键字与wait()notify()/notifyAll()方法相结合可以实现等待/通知机制。ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition()方法。

如果你想使用上述功能,那么选择 ReentrantLock 是一个不错的选择。

关于 Condition接口的补充:

Condition是 JDK1.5 之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能非常重要,而且是 Condition 接口默认提供的。而synchronized关键字就相当于整个 Lock 对象中只有一个Condition实例,所有的线程都注册在它一个身上。如果执行notifyAll()方法的话就会通知所有处于等待状态的线程,这样会造成很大的效率问题。而Condition实例的signalAll()方法,只会唤醒注册在该Condition实例中的所有等待线程。

可中断锁和不可中断锁有什么区别?

  • 可中断锁:获取锁的过程中可以被中断,不需要一直等到获取锁之后 才能进行其他逻辑处理。ReentrantLock 就属于是可中断锁。
  • 不可中断锁:一旦线程申请了锁,就只能等到拿到锁以后才能进行其他的逻辑处理。 synchronized 就属于是不可中断锁。

ThreadLocal

ThreadLocal 有什么用?

通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢?

JDK 中自带的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。

如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get()set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。

再举个简单的例子:两个人去宝屋收集宝物,这两个共用一个袋子的话肯定会产生争执,但是给他们两个人每个人分配一个袋子的话就不会出现这样的问题。如果把这两个人比作线程的话,那么 ThreadLocal 就是用来避免这两个线程竞争的。

如何使用 ThreadLocal?

相信看了上面的解释,大家已经搞懂 ThreadLocal 类是个什么东西了。下面简单演示一下如何在项目中实际使用 ThreadLocal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import java.text.SimpleDateFormat;
import java.util.Random;

public class ThreadLocalExample implements Runnable{

// SimpleDateFormat 不是线程安全的,所以每个线程都要有自己独立的副本
private static final ThreadLocal<SimpleDateFormat> formatter = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd HHmm"));

public static void main(String[] args) throws InterruptedException {
ThreadLocalExample obj = new ThreadLocalExample();
for(int i=0 ; i<10; i++){
Thread t = new Thread(obj, ""+i);
Thread.sleep(new Random().nextInt(1000));
t.start();
}
}

@Override
public void run() {
System.out.println("Thread Name= "+Thread.currentThread().getName()+" default Formatter = "+formatter.get().toPattern());
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
//formatter pattern is changed here by thread, but it won't reflect to other threads
formatter.set(new SimpleDateFormat());

System.out.println("Thread Name= "+Thread.currentThread().getName()+" formatter = "+formatter.get().toPattern());
}

}

输出结果 :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Thread Name= 0 default Formatter = yyyyMMdd HHmm
Thread Name= 0 formatter = yy-M-d ah:mm
Thread Name= 1 default Formatter = yyyyMMdd HHmm
Thread Name= 2 default Formatter = yyyyMMdd HHmm
Thread Name= 1 formatter = yy-M-d ah:mm
Thread Name= 3 default Formatter = yyyyMMdd HHmm
Thread Name= 2 formatter = yy-M-d ah:mm
Thread Name= 4 default Formatter = yyyyMMdd HHmm
Thread Name= 3 formatter = yy-M-d ah:mm
Thread Name= 4 formatter = yy-M-d ah:mm
Thread Name= 5 default Formatter = yyyyMMdd HHmm
Thread Name= 5 formatter = yy-M-d ah:mm
Thread Name= 6 default Formatter = yyyyMMdd HHmm
Thread Name= 6 formatter = yy-M-d ah:mm
Thread Name= 7 default Formatter = yyyyMMdd HHmm
Thread Name= 7 formatter = yy-M-d ah:mm
Thread Name= 8 default Formatter = yyyyMMdd HHmm
Thread Name= 9 default Formatter = yyyyMMdd HHmm
Thread Name= 8 formatter = yy-M-d ah:mm
Thread Name= 9 formatter = yy-M-d ah:mm

从输出中可以看出,虽然 Thread-0 已经改变了 formatter 的值,但 Thread-1 默认格式化值与初始化值相同,其他线程也一样。

上面有一段代码用到了创建 ThreadLocal 变量的那段代码用到了 Java8 的知识,它等于下面这段代码,如果你写了下面这段代码的话,IDEA 会提示你转换为 Java8 的格式(IDEA 真的不错!)。因为 ThreadLocal 类在 Java 8 中扩展,使用一个新的方法withInitial(),将 Supplier 功能接口作为参数。

1
2
3
4
5
6
private static final ThreadLocal<SimpleDateFormat> formatter = new ThreadLocal<SimpleDateFormat>(){
@Override
protected SimpleDateFormat initialValue(){
return new SimpleDateFormat("yyyyMMdd HHmm");
}
};

ThreadLocal 原理了解吗?

Thread类源代码入手。

1
2
3
4
5
6
7
8
9
public class Thread implements Runnable {
//......
//与此线程有关的ThreadLocal值。由ThreadLocal类维护
ThreadLocal.ThreadLocalMap threadLocals = null;

//与此线程有关的InheritableThreadLocal值。由InheritableThreadLocal类维护
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
//......
}

从上面Thread类 源代码可以看出Thread 类中有一个 threadLocals 和 一个 inheritableThreadLocals 变量,它们都是 ThreadLocalMap 类型的变量,我们可以把 ThreadLocalMap 理解为ThreadLocal 类实现的定制化的 HashMap。默认情况下这两个变量都是 null,只有当前线程调用 ThreadLocal 类的 setget方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap类对应的 get()set()方法。

ThreadLocal类的set()方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void set(T value) {
//获取当前请求的线程
Thread t = Thread.currentThread();
//取出 Thread 类内部的 threadLocals 变量(哈希表结构)
ThreadLocalMap map = getMap(t);
if (map != null)
// 将需要存储的值放入到这个哈希表中
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}

通过上面这些内容,我们足以通过猜测得出结论:最终的变量是放在了当前线程的 ThreadLocalMap 中,并不是存在 ThreadLocal 上,ThreadLocal 可以理解为只是ThreadLocalMap的封装,传递了变量值。 ThrealLocal 类中可以通过Thread.currentThread()获取到当前线程对象后,直接通过getMap(Thread t)可以访问到该线程的ThreadLocalMap对象。

每个Thread中都具备一个ThreadLocalMap,而ThreadLocalMap可以存储以ThreadLocal为 key ,Object 对象为 value 的键值对。

1
2
3
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
//......
}

比如我们在同一个线程中声明了两个 ThreadLocal 对象的话, Thread内部都是使用仅有的那个ThreadLocalMap 存放数据的,ThreadLocalMap的 key 就是 ThreadLocal对象,value 就是 ThreadLocal 对象调用set方法设置的值。

ThreadLocal 数据结构如下图所示:

ThreadLocal 数据结构

ThreadLocalMapThreadLocal的静态内部类。

ThreadLocal内部类

ThreadLocal 内存泄露问题是怎么导致的?

ThreadLocalMap 中使用的 key 为 ThreadLocal 的弱引用,而 value 是强引用。所以,如果 ThreadLocal 没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。

这样一来,ThreadLocalMap 中就会出现 key 为 null 的 Entry。假如我们不做任何措施的话,value 永远无法被 GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap 实现中已经考虑了这种情况,在调用 set()get()remove() 方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal方法后最好手动调用remove()方法

1
2
3
4
5
6
7
8
9
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;

Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}

弱引用介绍:

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。


线程池

什么是线程池?

顾名思义,线程池就是管理一系列线程的资源池。当有任务要处理时,直接从线程池中获取线程来处理,处理完之后线程并不会立即被销毁,而是等待下一个任务。

为什么要用线程池?

池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、Http 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。

线程池提供了一种限制和管理资源(包括执行一个任务)的方式。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。

这里借用《Java 并发编程的艺术》提到的来说一下使用线程池的好处

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。

如何创建线程池?

方式一:通过ThreadPoolExecutor构造函数来创建(推荐)。

通过构造方法实现

方式二:通过 Executor 框架的工具类 Executors 来创建。

我们可以创建多种类型的 ThreadPoolExecutor

  • **FixedThreadPool**:该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
  • SingleThreadExecutor 该方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
  • CachedThreadPool 该方法返回一个可根据实际情况调整线程数量的线程池。线程池的线程数量不确定,但若有空闲线程可以复用,则会优先使用可复用的线程。若所有线程均在工作,又有新的任务提交,则会创建新的线程处理任务。所有线程在当前任务执行完毕后,将返回线程池进行复用。
  • **ScheduledThreadPool**:该方法返回一个用来在给定的延迟后运行任务或者定期执行任务的线程池。

对应 Executors 工具类中的方法如图所示:

为什么不推荐使用内置线程池?

在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。

为什么呢?

使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。

另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下(后文会详细介绍到):

  • **FixedThreadPoolSingleThreadExecutor**:使用的是无界的 LinkedBlockingQueue,任务队列最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
  • **CachedThreadPool**:使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
  • ScheduledThreadPoolSingleThreadScheduledExecutor : 使用的无界的延迟阻塞队列DelayedWorkQueue,任务队列最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// 无界队列 LinkedBlockingQueue
public static ExecutorService newFixedThreadPool(int nThreads) {

return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());

}

// 无界队列 LinkedBlockingQueue
public static ExecutorService newSingleThreadExecutor() {

return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));

}

// 同步队列 SynchronousQueue,没有容量,最大线程数是 Integer.MAX_VALUE`
public static ExecutorService newCachedThreadPool() {

return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());

}

// DelayedWorkQueue(延迟阻塞队列)
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}

线程池常见参数有哪些?如何解释?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}

ThreadPoolExecutor 3 个最重要的参数:

  • corePoolSize : 任务队列未达到队列容量时,最大可以同时运行的线程数量。
  • maximumPoolSize : 任务队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

ThreadPoolExecutor其他常见参数 :

  • keepAliveTime:线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
  • unit : keepAliveTime 参数的时间单位。
  • threadFactory :executor 创建新线程的时候会用到。
  • handler :饱和策略。关于饱和策略下面单独介绍一下。

下面这张图可以加深你对线程池中各个参数的相互关系的理解(图片来源:《Java 性能调优实战》):

线程池各个参数的关系


线程池的饱和策略有哪些?

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:

  • ThreadPoolExecutor.AbortPolicy 抛出 RejectedExecutionException来拒绝新任务的处理。
  • ThreadPoolExecutor.CallerRunsPolicy 调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。
  • ThreadPoolExecutor.DiscardPolicy 不处理新任务,直接丢弃掉。
  • ThreadPoolExecutor.DiscardOldestPolicy 此策略将丢弃最早的未处理的任务请求。

举个例子:Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略来配置线程池的时候,默认使用的是 AbortPolicy。在这种饱和策略下,如果队列满了,ThreadPoolExecutor 将抛出 RejectedExecutionException 异常来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。如果不想丢弃任务的话,可以使用CallerRunsPolicyCallerRunsPolicy 和其他的几个策略不同,它既不会抛弃任务,也不会抛出异常,而是将任务回退给调用者,使用调用者的线程来执行任务

1
2
3
4
5
6
7
8
9
10
11
public static class CallerRunsPolicy implements RejectedExecutionHandler {

public CallerRunsPolicy() { }

public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
// 直接主线程执行,而不是线程池中的线程执行
r.run();
}
}
}

线程池常用的阻塞队列有哪些?

新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

不同的线程池会选用不同的阻塞队列,我们可以结合内置线程池来分析。

  • 容量为 Integer.MAX_VALUELinkedBlockingQueue(无界队列):FixedThreadPoolSingleThreadExector 。由于队列永远不会被放满,因此FixedThreadPool最多只能创建核心线程数的线程。
  • SynchronousQueue(同步队列):CachedThreadPoolSynchronousQueue 没有容量,不存储元素,目的是保证对于提交的任务,如果有空闲线程,则使用空闲线程来处理;否则新建一个线程来处理任务。也就是说,CachedThreadPool 的最大线程数是 Integer.MAX_VALUE ,可以理解为线程数是可以无限扩展的,可能会创建大量线程,从而导致 OOM。
  • DelayedWorkQueue(延迟阻塞队列):ScheduledThreadPoolSingleThreadScheduledExecutorDelayedWorkQueue 的内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构,可以保证每次出队的任务都是当前队列中执行时间最靠前的。DelayedWorkQueue 添加元素满了之后会自动扩容原来容量的 1/2,即永远不会阻塞,最大扩容可达 Integer.MAX_VALUE,所以最多只能创建核心线程数的线程。

线程池处理任务的流程了解吗?

图解线程池实现原理

  1. 如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。
  2. 如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。
  3. 如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。
  4. 如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,饱和策略会调用RejectedExecutionHandler.rejectedExecution()方法。

如何给线程池命名?

初始化线程池的时候需要显示命名(设置线程池名称前缀),有利于定位问题。

默认情况下创建的线程名字类似 pool-1-thread-n 这样的,没有业务含义,不利于我们定位问题。

给线程池里的线程命名通常有下面两种方式:

1、利用 guava 的 ThreadFactoryBuilder

1
2
3
4
ThreadFactory threadFactory = new ThreadFactoryBuilder()
.setNameFormat(threadNamePrefix + "-%d")
.setDaemon(true).build();
ExecutorService threadPool = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.MINUTES, workQueue, threadFactory);

2、自己实现 ThreadFactory

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;
/**
* 线程工厂,它设置线程名称,有利于我们定位问题。
*/
public final class NamingThreadFactory implements ThreadFactory {

private final AtomicInteger threadNum = new AtomicInteger();
private final ThreadFactory delegate;
private final String name;

/**
* 创建一个带名字的线程池生产工厂
*/
public NamingThreadFactory(ThreadFactory delegate, String name) {
this.delegate = delegate;
this.name = name; // TODO consider uniquifying this
}

@Override
public Thread newThread(Runnable r) {
Thread t = delegate.newThread(r);
t.setName(name + " [#" + threadNum.incrementAndGet() + "]");
return t;
}

}

如何设定线程池的大小?

很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。

上下文切换:

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

类比于实现世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。

  • 如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的,CPU 根本没有得到充分利用。
  • 如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1。比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
  • I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。

如何判断是 CPU 密集任务还是 IO 密集任务?

CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。

🌈 拓展一下(参见:issue#1737open in new window):

线程数更严谨的计算的方法应该是:最佳线程数 = N(CPU 核心数)∗(1+WT(线程等待时间)/ST(线程计算时间)),其中 WT(线程等待时间)=线程运行总时间 - ST(线程计算时间)

线程等待时间所占比例越高,需要越多线程。线程计算时间所占比例越高,需要越少线程。

我们可以通过 JDK 自带的工具 VisualVM 来查看 WT/ST 比例。

CPU 密集型任务的 WT/ST 接近或者等于 0,因此, 线程数可以设置为 N(CPU 核心数)∗(1+0)= N,和我们上面说的 N(CPU 核心数)+1 差不多。

IO 密集型任务下,几乎全是线程等待时间,从理论上来说,你就可以将线程数设置为 2N(按道理来说,WT/ST 的结果应该比较大,这里选择 2N 的原因应该是为了避免创建过多线程吧)。

公示也只是参考,具体还是要根据项目实际线上运行情况来动态调整。我在后面介绍的美团的线程池参数动态配置这种方案就非常不错,很实用!

如何动态修改线程池的参数?

美团技术团队在《Java 线程池实现原理及其在美团业务中的实践》open in new window这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。

美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。这三个核心参数是:

  • corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。

为什么是这三个参数?

我在Java 线程池详解open in new window 这篇文章中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略。

如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。

格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize()这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。

另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的 capacity 字段的 final 关键字修饰给去掉了,让它变为可变的)。

最终实现的可动态修改线程池参数效果如下。👏👏👏

动态配置线程池参数最终效果

还没看够?推荐 why 神的如何设置线程池参数?美团给出了一个让面试官虎躯一震的回答。open in new window这篇文章,深度剖析,很不错哦!

Future

Future 类有什么用?

Future 类是异步思想的典型运用,主要用在一些需要执行耗时任务的场景,避免程序一直原地等待耗时任务执行完成,执行效率太低。具体来说是这样的:当我们执行某一耗时的任务时,可以将这个耗时任务交给一个子线程去异步执行,同时我们可以干点其他事情,不用傻傻等待耗时任务执行完成。等我们的事情干完后,我们再通过 Future 类获取到耗时任务的执行结果。这样一来,程序的执行效率就明显提高了。

这其实就是多线程中经典的 Future 模式,你可以将其看作是一种设计模式,核心思想是异步调用,主要用在多线程领域,并非 Java 语言独有。

在 Java 中,Future 类只是一个泛型接口,位于 java.util.concurrent 包下,其中定义了 5 个方法,主要包括下面这 4 个功能:

  • 取消任务;
  • 判断任务是否被取消;
  • 判断任务是否已经执行完成;
  • 获取任务执行结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// V 代表了Future执行的任务返回值的类型
public interface Future<V> {
// 取消任务执行
// 成功取消返回 true,否则返回 false
boolean cancel(boolean mayInterruptIfRunning);
// 判断任务是否被取消
boolean isCancelled();
// 判断任务是否已经执行完成
boolean isDone();
// 获取任务执行结果
V get() throws InterruptedException, ExecutionException;
// 指定时间内没有返回计算结果就抛出 TimeOutException 异常
V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException, TimeoutExceptio

}

简单理解就是:我有一个任务,提交给了 Future 来处理。任务执行期间我自己可以去做任何想做的事情。并且,在这期间我还可以取消任务以及获取任务的执行状态。一段时间之后,我就可以 Future 那里直接取出任务执行结果。

Callable 和 Future 有什么关系?

我们可以通过 FutureTask 来理解 CallableFuture 之间的关系。

FutureTask 提供了 Future 接口的基本实现,常用来封装 CallableRunnable,具有取消任务、查看任务是否执行完成以及获取任务执行结果的方法。ExecutorService.submit() 方法返回的其实就是 Future 的实现类 FutureTask

1
2
<T> Future<T> submit(Callable<T> task);
Future<?> submit(Runnable task);

FutureTask 不光实现了 Future接口,还实现了Runnable 接口,因此可以作为任务直接被线程执行。

FutureTask 有两个构造函数,可传入 Callable 或者 Runnable 对象。实际上,传入 Runnable 对象也会在方法内部转换为Callable 对象。

1
2
3
4
5
6
7
8
9
10
11
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
// 通过适配器RunnableAdapter来将Runnable对象runnable转换成Callable对象
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}

FutureTask相当于对Callable 进行了封装,管理着任务执行的情况,存储了 Callablecall 方法的任务执行结果。

CompletableFuture 类有什么用?

Future 在实际使用过程中存在一些局限性比如不支持异步任务的编排组合、获取计算结果的 get() 方法为阻塞调用。

Java 8 才被引入CompletableFuture 类可以解决Future 的这些缺陷。CompletableFuture 除了提供了更为好用和强大的 Future 特性之外,还提供了函数式编程、异步任务编排组合(可以将多个异步任务串联起来,组成一个完整的链式调用)等能力。

下面我们来简单看看 CompletableFuture 类的定义。

1
2
public class CompletableFuture<T> implements Future<T>, CompletionStage<T> {
}

可以看到,CompletableFuture 同时实现了 FutureCompletionStage 接口。

CompletionStage 接口描述了一个异步计算的阶段。很多计算可以分成多个阶段或步骤,此时可以通过它将所有步骤组合起来,形成异步计算的流水线。

CompletionStage 接口中的方法比较多,CompletableFuture 的函数式能力就是这个接口赋予的。从这个接口的方法参数你就可以发现其大量使用了 Java8 引入的函数式编程。


线程池使用的一些小坑

重复创建线程池的坑

线程池是可以复用的,一定不要频繁创建线程池比如一个用户请求到了就单独创建一个线程池。

1
2
3
4
5
6
7
8
9
10
11
@GetMapping("wrong")
public String wrong() throws InterruptedException {
// 自定义线程池
ThreadPoolExecutor executor = new ThreadPoolExecutor(5,10,1L,TimeUnit.SECONDS,new ArrayBlockingQueue<>(100),new ThreadPoolExecutor.CallerRunsPolicy());

// 处理任务
executor.execute(() -> {
// ......
}
return "OK";
}

出现这种问题的原因还是对于线程池认识不够,需要加强线程池的基础知识。

Spring 内部线程池的坑

使用 Spring 内部线程池时,一定要手动自定义线程池,配置合理的参数,不然会出现生产问题(一个请求创建一个线程)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@Configuration
@EnableAsync
public class ThreadPoolExecutorConfig {

@Bean(name="threadPoolExecutor")
public Executor threadPoolExecutor(){
ThreadPoolTaskExecutor threadPoolExecutor = new ThreadPoolTaskExecutor();
int processNum = Runtime.getRuntime().availableProcessors(); // 返回可用处理器的Java虚拟机的数量
int corePoolSize = (int) (processNum / (1 - 0.2));
int maxPoolSize = (int) (processNum / (1 - 0.5));
threadPoolExecutor.setCorePoolSize(corePoolSize); // 核心池大小
threadPoolExecutor.setMaxPoolSize(maxPoolSize); // 最大线程数
threadPoolExecutor.setQueueCapacity(maxPoolSize * 1000); // 队列程度
threadPoolExecutor.setThreadPriority(Thread.MAX_PRIORITY);
threadPoolExecutor.setDaemon(false);
threadPoolExecutor.setKeepAliveSeconds(300);// 线程空闲时间
threadPoolExecutor.setThreadNamePrefix("test-Executor-"); // 线程名字前缀
return threadPoolExecutor;
}
}

线程池和 ThreadLocal 共用的坑

线程池和 ThreadLocal共用,可能会导致线程从ThreadLocal获取到的是旧值/脏数据。这是因为线程池会复用线程对象,与线程对象绑定的类的静态属性 ThreadLocal 变量也会被重用,这就导致一个线程可能获取到其他线程的ThreadLocal 值。

不要以为代码中没有显示使用线程池就不存在线程池了,像常用的 Web 服务器 Tomcat 处理任务为了提高并发量,就使用到了线程池,并且使用的是基于原生 Java 线程池改进完善得到的自定义线程池。

当然了,你可以将 Tomcat 设置为单线程处理任务。不过,这并不合适,会严重影响其处理任务的速度。

1
server.tomcat.max-threads=1

解决上述问题比较建议的办法是使用阿里巴巴开源的 TransmittableThreadLocal(TTL)。TransmittableThreadLocal类继承并加强了 JDK 内置的InheritableThreadLocal类,在使用线程池等会池化复用线程的执行组件情况下,提供ThreadLocal值的传递功能,解决异步执行时上下文传递的问题。

TransmittableThreadLocal 项目地址:https://github.com/alibaba/transmittable-thread-local

当线程池和ThreadLocal同时使用时,可能会出现一些问题,特别是在使用ThreadLocal存储线程局部变量时需要注意以下几点:

  1. 线程池的线程重用:线程池为了提高效率和资源利用率,会重用线程。这意味着线程在执行完任务后可能会被重新分配给其他任务。如果在任务执行期间使用了ThreadLocal存储的线程局部变量,并且没有在任务结束时进行适当的清理操作,那么下一个被分配的任务可能会继承之前任务留下的线程局部变量的值,导致意料之外的结果。
  2. 内存泄漏的风险:ThreadLocal使用了线程作为键来存储值,而线程池中的线程是可以被重用的。如果在ThreadLocal中设置了值,但在任务执行完毕后没有及时清理,那么存储的值将会一直存在,而不会被垃圾回收。这可能导致内存泄漏问题,因为线程池中的线程不会被销毁,而ThreadLocal中的值也不会被释放。
  3. 线程安全性问题:在多线程环境下,如果多个任务共享同一个ThreadLocal实例,并且在任务执行期间修改了该实例的值,可能会导致线程之间的数据互相干扰。由于线程池中的线程是共享的,多个任务可能会并发地访问和修改同一个ThreadLocal实例,因此需要确保对ThreadLocal的访问和修改是线程安全的,例如使用同步机制(如锁)来保证线程安全性。

为了避免以上问题,可以考虑以下几种做法:

  1. 在使用完ThreadLocal后,及时调用其remove方法来清理线程局部变量,确保不会影响后续任务。
  2. 在使用线程池时,尽量避免长时间持有ThreadLocal对象,避免潜在的内存泄漏风险。
  3. 对于需要在线程池中使用ThreadLocal的情况,可以通过自定义ThreadPoolExecutor或者使用ThreadPoolTaskExecutor等线程池的子类来管理ThreadLocal,重写相关方法,确保正确的清理和使用ThreadLocal。

总之,线程池和ThreadLocal的共用需要特别小心,确保在线程池中正确处理线程局部变量的使用、清理和线程安全性,以避免潜在的问题和错误结果的产生。


Java 常见并发容器总结

JDK 提供的这些容器大部分在 java.util.concurrent 包中。

  • ConcurrentHashMap : 线程安全的 HashMap
  • CopyOnWriteArrayList : 线程安全的 List,在读多写少的场合性能非常好,远远好于 Vector
  • ConcurrentLinkedQueue : 高效的并发队列,使用链表实现。可以看做一个线程安全的 LinkedList,这是一个非阻塞队列。
  • BlockingQueue : 这是一个接口,JDK 内部通过链表、数组等方式实现了这个接口。表示阻塞队列,非常适合用于作为数据共享的通道。
  • ConcurrentSkipListMap : 跳表的实现。这是一个 Map,使用跳表的数据结构进行快速查找。

ConcurrentHashMap

我们知道 HashMap 不是线程安全的,在并发场景下如果要保证一种可行的方式是使用 Collections.synchronizedMap() 方法来包装我们的 HashMap。但这是通过使用一个全局的锁来同步不同线程间的并发访问,因此会带来不可忽视的性能问题。

所以就有了 HashMap 的线程安全版本—— ConcurrentHashMap 的诞生。

在 JDK1.7 的时候,ConcurrentHashMap 对整个桶数组进行了分割分段(Segment,分段锁),每一把锁只锁容器其中一部分数据(下面有示意图),多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。

到了 JDK1.8 的时候,ConcurrentHashMap 已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。(JDK1.6 以后 synchronized 锁做了很多优化) 整个看起来就像是优化过且线程安全的 HashMap,虽然在 JDK1.8 中还能看到 Segment 的数据结构,但是已经简化了属性,只是为了兼容旧版本。


CopyOnWriteArrayList

在 JDK1.5 之前,如果想要使用并发安全的 List 只能选择 Vector。而 Vector 是一种老旧的集合,已经被淘汰。Vector 对于增删改查等方法基本都加了 synchronized,这种方式虽然能够保证同步,但这相当于对整个 Vector 加上了一把大锁,使得每个方法执行的时候都要去获得锁,导致性能非常低下。

JDK1.5 引入了 Java.util.concurrent(JUC)包,其中提供了很多线程安全且并发性能良好的容器,其中唯一的线程安全 List 实现就是 CopyOnWriteArrayList

对于大部分业务场景来说,读取操作往往是远大于写入操作的。由于读取操作不会对原有数据进行修改,因此,对于每次读取都进行加锁其实是一种资源浪费。相比之下,我们应该允许多个线程同时访问 List 的内部数据,毕竟对于读取操作来说是安全的。

这种思路与 ReentrantReadWriteLock 读写锁的设计思想非常类似,即读读不互斥、读写互斥、写写互斥(只有读读不互斥)。CopyOnWriteArrayList 更进一步地实现了这一思想。为了将读操作性能发挥到极致,CopyOnWriteArrayList 中的读取操作是完全无需加锁的。更加厉害的是,写入操作也不会阻塞读取操作,只有写写才会互斥。这样一来,读操作的性能就可以大幅度提升。

CopyOnWriteArrayList 线程安全的核心在于其采用了 写时复制(Copy-On-Write) 的策略,从 CopyOnWriteArrayList 的名字就能看出了。

当需要修改( addsetremove 等操作) CopyOnWriteArrayList 的内容时,不会直接修改原数组,而是会先创建底层数组的副本,对副本数组进行修改,修改完之后再将修改后的数组赋值回去,这样就可以保证写操作不会影响读操作了。


ConcurrentLinkedQueue

Java 提供的线程安全的 Queue 可以分为阻塞队列非阻塞队列,其中阻塞队列的典型例子是 BlockingQueue,非阻塞队列的典型例子是 ConcurrentLinkedQueue,在实际应用中要根据实际需要选用阻塞队列或者非阻塞队列。 阻塞队列可以通过加锁来实现,非阻塞队列可以通过 CAS 操作实现。

从名字可以看出,ConcurrentLinkedQueue这个队列使用链表作为其数据结构.ConcurrentLinkedQueue 应该算是在高并发环境中性能最好的队列了。它之所有能有很好的性能,是因为其内部复杂的实现。

ConcurrentLinkedQueue 内部代码我们就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法来实现线程安全就好了。

ConcurrentLinkedQueue 适合在对性能要求相对较高,同时对队列的读写存在多个线程同时进行的场景,即如果对队列加锁的成本较高则适合使用无锁的 ConcurrentLinkedQueue 来替代。


BlockingQueue

BlockingQueue 简介

上面我们己经提到了 ConcurrentLinkedQueue 作为高性能的非阻塞队列。下面我们要讲到的是阻塞队列——BlockingQueue。阻塞队列(BlockingQueue)被广泛使用在“生产者-消费者”问题中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。当队列容器已满,生产者线程会被阻塞,直到队列未满;当队列容器为空时,消费者线程会被阻塞,直至队列非空时为止。

BlockingQueue 是一个接口,继承自 Queue,所以其实现类也可以作为 Queue 的实现来使用,而 Queue 又继承自 Collection 接口。下面是 BlockingQueue 的相关实现类:

BlockingQueue 的实现类

下面主要介绍一下 3 个常见的 BlockingQueue 的实现类:ArrayBlockingQueueLinkedBlockingQueuePriorityBlockingQueue

ArrayBlockingQueue

ArrayBlockingQueueBlockingQueue 接口的有界队列实现类,底层采用数组来实现。

1
public class ArrayBlockingQueue<E>extends AbstractQueue<E>implements BlockingQueue<E>, Serializable{}

ArrayBlockingQueue 一旦创建,容量不能改变。其并发控制采用可重入锁 ReentrantLock ,不管是插入操作还是读取操作,都需要获取到锁才能进行操作。当队列容量满时,尝试将元素放入队列将导致操作阻塞;尝试从一个空队列中取一个元素也会同样阻塞。

ArrayBlockingQueue 默认情况下不能保证线程访问队列的公平性,所谓公平性是指严格按照线程等待的绝对时间顺序,即最先等待的线程能够最先访问到 ArrayBlockingQueue。而非公平性则是指访问 ArrayBlockingQueue 的顺序不是遵守严格的时间顺序,有可能存在,当 ArrayBlockingQueue 可以被访问时,长时间阻塞的线程依然无法访问到 ArrayBlockingQueue。如果保证公平性,通常会降低吞吐量。如果需要获得公平性的 ArrayBlockingQueue,可采用如下代码:

1
private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);

LinkedBlockingQueue

LinkedBlockingQueue 底层基于单向链表实现的阻塞队列,可以当做无界队列也可以当做有界队列来使用,同样满足 FIFO 的特性,与 ArrayBlockingQueue 相比起来具有更高的吞吐量,为了防止 LinkedBlockingQueue 容量迅速增,损耗大量内存。通常在创建 LinkedBlockingQueue 对象时,会指定其大小,如果未指定,容量等于 Integer.MAX_VALUE

相关构造方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
*某种意义上的无界队列
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}

/**
*有界队列
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}

PriorityBlockingQueue

PriorityBlockingQueue 是一个支持优先级的无界阻塞队列。默认情况下元素采用自然顺序进行排序,也可以通过自定义类实现 compareTo() 方法来指定元素排序规则,或者初始化时通过构造器参数 Comparator 来指定排序规则。

PriorityBlockingQueue 并发控制采用的是可重入锁 ReentrantLock,队列为无界队列(ArrayBlockingQueue 是有界队列,LinkedBlockingQueue 也可以通过在构造函数中传入 capacity 指定队列最大的容量,但是 PriorityBlockingQueue 只能指定初始的队列大小,后面插入元素的时候,如果空间不够的话会自动扩容)。

简单地说,它就是 PriorityQueue 的线程安全版本。不可以插入 null 值,同时,插入队列的对象必须是可比较大小的(comparable),否则报 ClassCastException 异常。它的插入操作 put 方法不会 block,因为它是无界队列(take 方法在队列为空的时候会阻塞)。

推荐文章: 《解读 Java 并发队列 BlockingQueue》


Atomic 原子类总结

Atomic 原子类介绍

Atomic 翻译成中文是原子的意思。在化学上,我们知道原子是构成一般物质的最小单位,在化学反应中是不可分割的。在我们这里 Atomic 是指一个操作是不可中断的。即使是在多个线程一起执行的时候,一个操作一旦开始,就不会被其他线程干扰。

所以,所谓原子类说简单点就是具有原子/原子操作特征的类。

并发包 java.util.concurrent 的原子类都存放在java.util.concurrent.atomic下,如下图所示。

JUC原子类概览

根据操作的数据类型,可以将 JUC 包中的原子类分为 4 类

基本类型

使用原子的方式更新基本类型

  • AtomicInteger:整型原子类
  • AtomicLong:长整型原子类
  • AtomicBoolean:布尔型原子类

数组类型

使用原子的方式更新数组里的某个元素

  • AtomicIntegerArray:整型数组原子类
  • AtomicLongArray:长整型数组原子类
  • AtomicReferenceArray:引用类型数组原子类

引用类型

  • AtomicReference:引用类型原子类
  • AtomicMarkableReference:原子更新带有标记的引用类型。该类将 boolean 标记与引用关联起来,也可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。
  • AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于解决原子的更新数据和数据的版本号,可以解决使用 CAS 进行原子更新时可能出现的 ABA 问题。

🐛 修正(参见:issue#626open in new window : AtomicMarkableReference 不能解决 ABA 问题。

对象的属性修改类型

  • AtomicIntegerFieldUpdater:原子更新整型字段的更新器
  • AtomicLongFieldUpdater:原子更新长整型字段的更新器
  • AtomicReferenceFieldUpdater:原子更新引用类型里的字段


Java并发编程
https://tomysmith.top/java-thread/
作者
Plua Htims
发布于
2023年11月26日
许可协议