Redis
Redis相关知识
本文整理自JavaGuide
Redis 为什么这么快?
Redis 内部做了非常多的性能优化,比较重要的有下面 3 点:
- Redis 基于内存,内存的访问速度是磁盘的上千倍;
- Redis 基于 Reactor 模式设计开发了一套高效的事件处理模型,主要是单线程事件循环和 IO 多路复用(Redis 线程模式后面会详细介绍到);
- Redis 内置了多种优化过后的数据结构实现,性能非常高。
Redis 线程模型
对于读写命令来说,Redis 一直是单线程模型。不过,在 Redis 4.0 版本之后引入了多线程来执行一些大键值对的异步删除操作, Redis 6.0 版本之后引入了多线程来处理网络请求(提高网络 IO 读写性能)。
过期的数据的删除策略了解么
如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?
常用的过期数据的删除策略就两个(重要!自己造缓存轮子的时候需要格外考虑的东西):
- 惰性删除:只会在取出 key 的时候才对数据进行过期检查。这样对 CPU 最友好,但是可能会造成太多过期 key 没有被删除。
- 定期删除:每隔一段时间抽取一批 key 执行删除过期 key 操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对 CPU 时间的影响。
定期删除对内存更加友好,惰性删除对 CPU 更加友好。两者各有千秋,所以 Redis 采用的是 定期删除+惰性/懒汉式删除 。
但是,仅仅通过给 key 设置过期时间还是有问题的。因为还是可能存在定期删除和惰性删除漏掉了很多过期 key 的情况。这样就导致大量过期 key 堆积在内存里,然后就 Out of memory 了。
Redis 内存淘汰机制了解么
1 |
|
Redis 提供 6 种数据淘汰策略:
- volatile-lru(least recently used):从已设置过期时间的数据集(
server.db[i].expires
)中挑选最近最少使用的数据淘汰。 - volatile-ttl:从已设置过期时间的数据集(
server.db[i].expires
)中挑选将要过期的数据淘汰。 - volatile-random:从已设置过期时间的数据集(
server.db[i].expires
)中任意选择数据淘汰。 - allkeys-lru(least recently used):当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
- allkeys-random:从数据集(
server.db[i].dict
)中任意选择数据淘汰。 - no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!
4.0 版本后增加以下两种:
- volatile-lfu(least frequently used):从已设置过期时间的数据集(
server.db[i].expires
)中挑选最不经常使用的数据淘汰。 - allkeys-lfu(least frequently used):当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key。
当我们把 Redis 当做纯缓存使用时,通常会给这个实例设置一个内存上限 maxmemory,然后设置一个数据淘汰策略。
当 Redis 内存达到 maxmemory 后,每次写入新的数据之前,Redis 必须先从实例中踢出一部分数据,让整个实例的内存维持在 maxmemory 之下,然后才能把新数据写进来。
这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于你配置的淘汰策略:
- allkeys-lru:不管 key 是否设置了过期,淘汰最近最少访问的 key
- volatile-lru:只淘汰最近最少访问、并设置了过期时间的 key
- allkeys-random:不管 key 是否设置了过期,随机淘汰 key
- volatile-random:只随机淘汰设置了过期时间的 key
- volatile-ttl:设置了过期时间,淘汰即将过期的 key
- noeviction:不淘汰任何 key,实例内存达到 maxmeory 后,再写入新数据直接返回错误
- allkeys-lfu:不管 key 是否设置了过期,淘汰访问频率最低的 key(4.0+版本支持)
- volatile-lfu:只淘汰访问频率最低、并设置了过期时间 key(4.0+版本支持)
一般最常使用的是 allkeys-lru / volatile-lru 淘汰策略,它们的处理逻辑是,每次从实例中随机取出一批 key(这个数量可配置),然后淘汰一个最少访问的 key,之后把剩下的 key 暂存到一个池子中,继续随机取一批 key,并与之前池子中的 key 比较,再淘汰一个最少访问的 key。以此往复,直到实例内存降到 maxmemory 之下。
大量 key 集中过期问题
定期删除执行过程中,如果突然遇到大量过期 key 的话,客户端请求必须等待定期清理过期 key 任务线程执行完成,因为这个这个定期任务线程是在 Redis 主线程中执行的。这就导致客户端请求没办法被及时处理,响应速度会比较慢。
如何解决呢? 下面是两种常见的方法:
- 给 key 设置随机过期时间。
- 开启 lazy-free(惰性删除/延迟释放) 。lazy-free 特性是 Redis 4.0 开始引入的,指的是让 Redis 采用异步方式延迟释放 key 使用的内存,将该操作交给单独的子线程处理,避免阻塞主线程。
个人建议不管是否开启 lazy-free,我们都尽量给 key 设置随机过期时间。
Redis bigkey(大 Key)
什么是 bigkey?
简单来说,如果一个 key 对应的 value 所占用的内存比较大,那这个 key 就可以看作是 bigkey。具体多大才算大呢?有一个不是特别精确的参考标准:string 类型的 value 超过 10 kb,复合类型的 value 包含的元素超过 5000 个(对于复合类型的 value 来说,不一定包含的元素越多,占用的内存就越多)。
bigkey 有什么危害?
bigkey 除了会消耗更多的内存空间和带宽,还会对性能造成比较大的影响。因此,我们应该尽量避免 Redis 中存在 bigkey。
如何发现 bigkey?
1、使用 Redis 自带的 --bigkeys
参数来查找。
1 |
|
从这个命令的运行结果,我们可以看出:这个命令会扫描(Scan) Redis 中的所有 key ,会对 Redis 的性能有一点影响。并且,这种方式只能找出每种数据结构 top 1 bigkey(占用内存最大的 string 数据类型,包含元素最多的复合数据类型)。然而,一个 key 的元素多并不代表占用内存也多,需要我们根据具体的业务情况来进一步判断。
在线上执行该命令时,为了降低对 Redis 的影响,需要指定 -i
参数控制扫描的频率。redis-cli -p 6379 --bigkeys -i 3
表示扫描过程中每次扫描后休息的时间间隔为 3 秒。
2、借助开源工具分析 RDB 文件。
通过分析 RDB 文件来找出 big key。这种方案的前提是你的 Redis 采用的是 RDB 持久化。
网上有现成的代码/工具可以直接拿来使用:
- redis-rdb-toolsopen in new window:Python 语言写的用来分析 Redis 的 RDB 快照文件用的工具
- rdb_bigkeysopen in new window : Go 语言写的用来分析 Redis 的 RDB 快照文件用的工具,性能更好。
3、借助公有云的 Redis 分析服务。
如果你用的是公有云的 Redis 服务的话,可以看看其是否提供了 key 分析功能(一般都提供了)。
这里以阿里云 Redis 为例说明,它支持 bigkey 实时分析、发现,文档地址:https://www.alibabacloud.com/help/zh/apsaradb-for-redis/latest/use-the-real-time-key-statistics-featureopen 。
阿里云Key分析
如何处理 bigkey?
bigkey 的常见处理以及优化办法如下(这些方法可以配合起来使用):
- 分割 bigkey:将一个 bigkey 分割为多个小 key。这种方式需要修改业务层的代码,一般不推荐这样做。
- 手动清理:Redis 4.0+ 可以使用
UNLINK
命令来异步删除一个或多个指定的 key。Redis 4.0 以下可以考虑使用SCAN
命令结合DEL
命令来分批次删除。 - 采用合适的数据结构:比如使用 HyperLogLog 统计页面 UV。
- 开启 lazy-free(惰性删除/延迟释放) :lazy-free 特性是 Redis 4.0 开始引入的,指的是让 Redis 采用异步方式延迟释放 key 使用的内存,将该操作交给单独的子线程处理,避免阻塞主线程。
Redis 生产问题
缓存穿透
什么是缓存穿透?
缓存穿透说简单点就是大量请求的 key 是不合理的,根本不存在于缓存中,也不存在于数据库中 。这就导致这些请求直接到了数据库上,根本没有经过缓存这一层,对数据库造成了巨大的压力,可能直接就被这么多请求弄宕机了。
缓存穿透
举个例子:某个黑客故意制造一些非法的 key 发起大量请求,导致大量请求落到数据库,结果数据库上也没有查到对应的数据。也就是说这些请求最终都落到了数据库上,对数据库造成了巨大的压力。
有哪些解决办法?
最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。
1)缓存无效 key
如果缓存和数据库都查不到某个 key 的数据就写一个到 Redis 中去并设置过期时间,具体命令如下:SET key value EX 10086
。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求 key,会导致 Redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。
另外,这里多说一嘴,一般情况下我们是这样设计 key 的:表名:列名:主键名:主键值
。
如果用 Java 代码展示的话,差不多是下面这样的:
1 |
|
2)布隆过滤器
布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在于海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。
具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。
加入布隆过滤器之后的缓存处理流程图如下。
加入布隆过滤器之后的缓存处理流程图
但是,需要注意的是布隆过滤器可能会存在误判的情况。总结来说就是:布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。
为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理来说!
我们先来看一下,当一个元素加入布隆过滤器中的时候,会进行哪些操作:
- 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
- 根据得到的哈希值,在位数组中把对应下标的值置为 1。
我们再来看一下,当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行哪些操作:
- 对给定元素再次进行相同的哈希计算;
- 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。
然后,一定会出现这样一种情况:不同的字符串可能哈希出来的位置相同。 (可以适当增加位数组大小或者调整我们的哈希函数来降低概率)
更多关于布隆过滤器的内容可以看我的这篇原创:《不了解布隆过滤器?一文给你整的明明白白!》open in new window ,强烈推荐,个人感觉网上应该找不到总结的这么明明白白的文章了。
缓存击穿
什么是缓存击穿?
缓存击穿中,请求的 key 对应的是 热点数据 ,该数据 存在于数据库中,但不存在于缓存中(通常是因为缓存中的那份数据已经过期) 。这就可能会导致瞬时大量的请求直接打到了数据库上,对数据库造成了巨大的压力,可能直接就被这么多请求弄宕机了。
缓存击穿
举个例子:秒杀进行过程中,缓存中的某个秒杀商品的数据突然过期,这就导致瞬时大量对该商品的请求直接落到数据库上,对数据库造成了巨大的压力。
有哪些解决办法?
- 设置热点数据永不过期或者过期时间比较长。
- 针对热点数据提前预热,将其存入缓存中并设置合理的过期时间比如秒杀场景下的数据在秒杀结束之前不过期。
- 请求数据库写数据到缓存之前,先获取互斥锁,保证只有一个请求会落到数据库上,减少数据库的压力。
缓存穿透和缓存击穿有什么区别?
缓存穿透中,请求的 key 既不存在于缓存中,也不存在于数据库中。
缓存击穿中,请求的 key 对应的是 热点数据 ,该数据 存在于数据库中,但不存在于缓存中(通常是因为缓存中的那份数据已经过期) 。
缓存雪崩
什么是缓存雪崩?
我发现缓存雪崩这名字起的有点意思,哈哈。
实际上,缓存雪崩描述的就是这样一个简单的场景:缓存在同一时间大面积的失效,导致大量的请求都直接落到了数据库上,对数据库造成了巨大的压力。 这就好比雪崩一样,摧枯拉朽之势,数据库的压力可想而知,可能直接就被这么多请求弄宕机了。
另外,缓存服务宕机也会导致缓存雪崩现象,导致所有的请求都落到了数据库上。
缓存雪崩
举个例子:数据库中的大量数据在同一时间过期,这个时候突然有大量的请求需要访问这些过期的数据。这就导致大量的请求直接落到数据库上,对数据库造成了巨大的压力。
有哪些解决办法?
针对 Redis 服务不可用的情况:
- 采用 Redis 集群,避免单机出现问题整个缓存服务都没办法使用。
- 限流,避免同时处理大量的请求。
针对热点缓存失效的情况:
- 设置不同的失效时间比如随机设置缓存的失效时间。
- 缓存永不失效(不太推荐,实用性太差)。
- 设置二级缓存。
缓存雪崩和缓存击穿有什么区别?
缓存雪崩和缓存击穿比较像,但缓存雪崩导致的原因是缓存中的大量或者所有数据失效,缓存击穿导致的原因主要是某个热点数据不存在与缓存中(通常是因为缓存中的那份数据已经过期)。
Redis 5 种基本数据结构详解
String(字符串)
介绍
String 是 Redis 中最简单同时也是最常用的一个数据结构。
String 是一种二进制安全的数据结构,可以用来存储任何类型的数据比如字符串、整数、浮点数、图片(图片的 base64 编码或者解码或者图片的路径)、序列化后的对象。
虽然 Redis 是用 C 语言写的,但是 Redis 并没有使用 C 的字符串表示,而是自己构建了一种 简单动态字符串(Simple Dynamic String,SDS)。相比于 C 的原生字符串,Redis 的 SDS 不光可以保存文本数据还可以保存二进制数据,并且获取字符串长度复杂度为 O(1)(C 字符串为 O(N)),除此之外,Redis 的 SDS API 是安全的,不会造成缓冲区溢出。
常用命令
命令 | 介绍 |
---|---|
SET key value | 设置指定 key 的值 |
SETNX key value | 只有在 key 不存在时设置 key 的值 |
GET key | 获取指定 key 的值 |
MSET key1 value1 key2 value2 … | 设置一个或多个指定 key 的值 |
MGET key1 key2 … | 获取一个或多个指定 key 的值 |
STRLEN key | 返回 key 所储存的字符串值的长度 |
INCR key | 将 key 中储存的数字值增一 |
DECR key | 将 key 中储存的数字值减一 |
EXISTS key | 判断指定 key 是否存在 |
DEL key(通用) | 删除指定的 key |
EXPIRE key seconds(通用) | 给指定 key 设置过期时间 |
更多 Redis String 命令以及详细使用指南,请查看 Redis 官网对应的介绍:https://redis.io/commands/?group=stringopen 。
基本操作:
1 |
|
批量设置:
1 |
|
计数器(字符串的内容为整数的时候可以使用):
1 |
|
设置过期时间(默认为永不过期):
1 |
|
应用场景
需要存储常规数据的场景
- 举例:缓存 session、token、图片地址、序列化后的对象(相比较于 Hash 存储更节省内存)。
- 相关命令:
SET
、GET
。
需要计数的场景
- 举例:用户单位时间的请求数(简单限流可以用到)、页面单位时间的访问数。
- 相关命令:
SET
、GET
、INCR
、DECR
。
分布式锁
利用 SETNX key value
命令可以实现一个最简易的分布式锁(存在一些缺陷,通常不建议这样实现分布式锁)。
List(列表)
介绍
Redis 中的 List 其实就是链表数据结构的实现。我在 线性数据结构 :数组、链表、栈、队列open in new window 这篇文章中详细介绍了链表这种数据结构,我这里就不多做介绍了。
许多高级编程语言都内置了链表的实现比如 Java 中的 LinkedList
,但是 C 语言并没有实现链表,所以 Redis 实现了自己的链表数据结构。Redis 的 List 的实现为一个 双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。
常用命令
命令 | 介绍 |
---|---|
RPUSH key value1 value2 … | 在指定列表的尾部(右边)添加一个或多个元素 |
LPUSH key value1 value2 … | 在指定列表的头部(左边)添加一个或多个元素 |
LSET key index value | 将指定列表索引 index 位置的值设置为 value |
LPOP key | 移除并获取指定列表的第一个元素(最左边) |
RPOP key | 移除并获取指定列表的最后一个元素(最右边) |
LLEN key | 获取列表元素数量 |
LRANGE key start end | 获取列表 start 和 end 之间 的元素 |
更多 Redis List 命令以及详细使用指南,请查看 Redis 官网对应的介绍:https://redis.io/commands/?group=listopen 。
通过 RPUSH/LPOP
或者 LPUSH/RPOP
实现队列:
1 |
|
通过 RPUSH/RPOP
或者LPUSH/LPOP
实现栈:
1 |
|
我专门画了一个图方便大家理解 RPUSH
, LPOP
, lpush
, RPOP
命令:
通过 LRANGE
查看对应下标范围的列表元素:
1 |
|
通过 LRANGE
命令,你可以基于 List 实现分页查询,性能非常高!
通过 LLEN
查看链表长度:
1 |
|
应用场景
信息流展示
- 举例:最新文章、最新动态。
- 相关命令:
LPUSH
、LRANGE
。
消息队列
Redis List 数据结构可以用来做消息队列,只是功能过于简单且存在很多缺陷,不建议这样做。
相对来说,Redis 5.0 新增加的一个数据结构 Stream
更适合做消息队列一些,只是功能依然非常简陋。和专业的消息队列相比,还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。
Hash(哈希)
介绍
Redis 中的 Hash 是一个 String 类型的 field-value(键值对) 的映射表,特别适合用于存储对象,后续操作的时候,你可以直接修改这个对象中的某些字段的值。
Hash 类似于 JDK1.8 前的 HashMap
,内部实现也差不多(数组 + 链表)。不过,Redis 的 Hash 做了更多优化。
常用命令
命令 | 介绍 |
---|---|
HSET key field value | 设置指定哈希表中指定字段的值 |
HSETNX key field value | 只有指定字段不存在时设置指定字段的值 |
HMSET key field1 value1 field2 value2 … | 同时将一个或多个 field-value (域-值)对设置到指定哈希表中 |
HGET key field | 获取指定哈希表中指定字段的值 |
HMGET key field1 field2 … | 获取指定哈希表中一个或者多个指定字段的值 |
HGETALL key | 获取指定哈希表中所有的键值对 |
HEXISTS key field | 查看指定哈希表中指定的字段是否存在 |
HDEL key field1 field2 … | 删除一个或多个哈希表字段 |
HLEN key | 获取指定哈希表中字段的数量 |
HINCRBY key field increment | 对指定哈希中的指定字段做运算操作(正数为加,负数为减) |
应用场景
对象数据存储场景
- 举例:用户信息、商品信息、文章信息、购物车信息。
- 相关命令:
HSET
(设置单个字段的值)、HMSET
(设置多个字段的值)、HGET
(获取单个字段的值)、HMGET
(获取多个字段的值)。
Set(集合)
介绍
Redis 中的 Set 类型是一种无序集合,集合中的元素没有先后顺序但都唯一,有点类似于 Java 中的 HashSet
。当你需要存储一个列表数据,又不希望出现重复数据时,Set 是一个很好的选择,并且 Set 提供了判断某个元素是否在一个 Set 集合内的重要接口,这个也是 List 所不能提供的。
你可以基于 Set 轻易实现交集、并集、差集的操作,比如你可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。这样的话,Set 可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程。
常用命令
命令 | 介绍 |
---|---|
SADD key member1 member2 … | 向指定集合添加一个或多个元素 |
SMEMBERS key | 获取指定集合中的所有元素 |
SCARD key | 获取指定集合的元素数量 |
SISMEMBER key member | 判断指定元素是否在指定集合中 |
SINTER key1 key2 … | 获取给定所有集合的交集 |
SINTERSTORE destination key1 key2 … | 将给定所有集合的交集存储在 destination 中 |
SUNION key1 key2 … | 获取给定所有集合的并集 |
SUNIONSTORE destination key1 key2 … | 将给定所有集合的并集存储在 destination 中 |
SDIFF key1 key2 … | 获取给定所有集合的差集 |
SDIFFSTORE destination key1 key2 … | 将给定所有集合的差集存储在 destination 中 |
SPOP key count | 随机移除并获取指定集合中一个或多个元素 |
SRANDMEMBER key count | 随机获取指定集合中指定数量的元素 |
应用场景
需要存放的数据不能重复的场景
- 举例:网站 UV 统计(数据量巨大的场景还是
HyperLogLog
更适合一些)、文章点赞、动态点赞等场景。 - 相关命令:
SCARD
(获取集合数量) 。
需要获取多个数据源交集、并集和差集的场景
- 举例:共同好友(交集)、共同粉丝(交集)、共同关注(交集)、好友推荐(差集)、音乐推荐(差集)、订阅号推荐(差集+交集) 等场景。
- 相关命令:
SINTER
(交集)、SINTERSTORE
(交集)、SUNION
(并集)、SUNIONSTORE
(并集)、SDIFF
(差集)、SDIFFSTORE
(差集)。
需要随机获取数据源中的元素的场景
- 举例:抽奖系统、随机点名等场景。
- 相关命令:
SPOP
(随机获取集合中的元素并移除,适合不允许重复中奖的场景)、SRANDMEMBER
(随机获取集合中的元素,适合允许重复中奖的场景)。
Sorted Set(有序集合)
介绍
Sorted Set 类似于 Set,但和 Set 相比,Sorted Set 增加了一个权重参数 score
,使得集合中的元素能够按 score
进行有序排列,还可以通过 score
的范围来获取元素的列表。有点像是 Java 中 HashMap
和 TreeSet
的结合体。
常用命令
命令 | 介绍 |
---|---|
ZADD key score1 member1 score2 member2 … | 向指定有序集合添加一个或多个元素 |
ZCARD KEY | 获取指定有序集合的元素数量 |
ZSCORE key member | 获取指定有序集合中指定元素的 score 值 |
ZINTERSTORE destination numkeys key1 key2 … | 将给定所有有序集合的交集存储在 destination 中,对相同元素对应的 score 值进行 SUM 聚合操作,numkeys 为集合数量 |
ZUNIONSTORE destination numkeys key1 key2 … | 求并集,其它和 ZINTERSTORE 类似 |
ZDIFFSTORE destination numkeys key1 key2 … | 求差集,其它和 ZINTERSTORE 类似 |
ZRANGE key start end | 获取指定有序集合 start 和 end 之间的元素(score 从低到高) |
ZREVRANGE key start end | 获取指定有序集合 start 和 end 之间的元素(score 从高到底) |
ZREVRANK key member | 获取指定有序集合中指定元素的排名(score 从大到小排序) |
应用场景
需要随机获取数据源中的元素根据某个权重进行排序的场景
- 举例:各种排行榜比如直播间送礼物的排行榜、朋友圈的微信步数排行榜、王者荣耀中的段位排行榜、话题热度排行榜等等。
- 相关命令:
ZRANGE
(从小到大排序)、ZREVRANGE
(从大到小排序)、ZREVRANK
(指定元素排名)。
需要存储的数据有优先级或者重要程度的场景 比如优先级任务队列。
- 举例:优先级任务队列。
- 相关命令:
ZRANGE
(从小到大排序)、ZREVRANGE
(从大到小排序)、ZREVRANK
(指定元素排名)。
RDB 持久化
什么是 RDB 持久化?
Redis 可以通过创建快照来获得存储在内存里面的数据在 某个时间点 上的副本。Redis 创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis 主从结构,主要用来提高 Redis 性能),还可以将快照留在原地以便重启服务器的时候使用。
快照持久化是 Redis 默认采用的持久化方式,在 redis.conf
配置文件中默认有此下配置:
1 |
|
AOF 持久化
什么是 AOF 持久化?
与快照持久化相比,AOF 持久化的实时性更好。默认情况下 Redis 没有开启 AOF(append only file)方式的持久化(Redis 6.0 之后已经默认是开启了),可以通过 appendonly
参数开启:
1 |
|
开启 AOF 持久化后每执行一条会更改 Redis 中的数据的命令,Redis 就会将该命令写入到 AOF 缓冲区 server.aof_buf
中,然后再写入到 AOF 文件中(此时还在系统内核缓存区未同步到磁盘),最后再根据持久化方式( fsync
策略)的配置来决定何时将系统内核缓存区的数据同步到硬盘中的。
只有同步到磁盘中才算持久化保存了,否则依然存在数据丢失的风险,比如说:系统内核缓存区的数据还未同步,磁盘机器就宕机了,那这部分数据就算丢失了。
AOF 文件的保存位置和 RDB 文件的位置相同,都是通过 dir
参数设置的,默认的文件名是 appendonly.aof
。
AOF 工作基本流程是怎样的?
AOF 持久化功能的实现可以简单分为 5 步:
- 命令追加(append):所有的写命令会追加到 AOF 缓冲区中。
- 文件写入(write):将 AOF 缓冲区的数据写入到 AOF 文件中。这一步需要调用
write
函数(系统调用),write
将数据写入到了系统内核缓冲区之后直接返回了(延迟写)。注意!!!此时并没有同步到磁盘。 - 文件同步(fsync):AOF 缓冲区根据对应的持久化方式(
fsync
策略)向硬盘做同步操作。这一步需要调用fsync
函数(系统调用),fsync
针对单个文件操作,对其进行强制硬盘同步,fsync
将阻塞直到写入磁盘完成后返回,保证了数据持久化。 - 文件重写(rewrite):随着 AOF 文件越来越大,需要定期对 AOF 文件进行重写,达到压缩的目的。
- 重启加载(load):当 Redis 重启时,可以加载 AOF 文件进行数据恢复。
Linux 系统直接提供了一些函数用于对文件和设备进行访问和控制,这些函数被称为 系统调用(syscall)。
这里对上面提到的一些 Linux 系统调用再做一遍解释:
write
:写入系统内核缓冲区之后直接返回(仅仅是写到缓冲区),不会立即同步到硬盘。虽然提高了效率,但也带来了数据丢失的风险。同步硬盘操作通常依赖于系统调度机制,Linux 内核通常为 30s 同步一次,具体值取决于写出的数据量和 I/O 缓冲区的状态。fsync
:fsync
用于强制刷新系统内核缓冲区(同步到到磁盘),确保写磁盘操作结束才会返回。
AOF 工作流程图如下:
AOF 工作基本流程
AOF 持久化方式有哪些?
在 Redis 的配置文件中存在三种不同的 AOF 持久化方式( fsync
策略),它们分别是:
appendfsync always
:主线程调用write
执行写操作后,后台线程(aof_fsync
线程)立即会调用fsync
函数同步 AOF 文件(刷盘),fsync
完成后线程返回,这样会严重降低 Redis 的性能(write
+fsync
)。appendfsync everysec
:主线程调用write
执行写操作后立即返回,由后台线程(aof_fsync
线程)每秒钟调用fsync
函数(系统调用)同步一次 AOF 文件(write
+fsync
,fsync
间隔为 1 秒)appendfsync no
:主线程调用write
执行写操作后立即返回,让操作系统决定何时进行同步,Linux 下一般为 30 秒一次(write
但不fsync
,fsync
的时机由操作系统决定)。
可以看出:这 3 种持久化方式的主要区别在于 fsync
同步 AOF 文件的时机(刷盘)。
为了兼顾数据和写入性能,可以考虑 appendfsync everysec
选项 ,让 Redis 每秒同步一次 AOF 文件,Redis 性能受到的影响较小。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis 还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。
从 Redis 7.0.0 开始,Redis 使用了 Multi Part AOF 机制。顾名思义,Multi Part AOF 就是将原来的单个 AOF 文件拆分成多个 AOF 文件。在 Multi Part AOF 中,AOF 文件被分为三种类型,分别为:
- BASE:表示基础 AOF 文件,它一般由子进程通过重写产生,该文件最多只有一个。
- INCR:表示增量 AOF 文件,它一般会在 AOFRW 开始执行时被创建,该文件可能存在多个。
- HISTORY:表示历史 AOF 文件,它由 BASE 和 INCR AOF 变化而来,每次 AOFRW 成功完成时,本次 AOFRW 之前对应的 BASE 和 INCR AOF 都将变为 HISTORY,HISTORY 类型的 AOF 会被 Redis 自动删除。
Multi Part AOF 不是重点,了解即可,详细介绍可以看看阿里开发者的Redis 7.0 Multi Part AOF 的设计和实现open in new window 这篇文章。
为什么是在执行完命令之后记录日志呢?
- 避免额外的检查开销,AOF 记录日志不会对命令进行语法检查;
- 在命令执行完之后再记录,不会阻塞当前的命令执行。
如何选择 RDB 和 AOF
RDB 比 AOF 优秀的地方:
- RDB 文件存储的内容是经过压缩的二进制数据, 保存着某个时间点的数据集,文件很小,适合做数据的备份,灾难恢复。AOF 文件存储的是每一次写命令,类似于 MySQL 的 binlog 日志,通常会比 RDB 文件大很多。当 AOF 变得太大时,Redis 能够在后台自动重写 AOF。新的 AOF 文件和原有的 AOF 文件所保存的数据库状态一样,但体积更小。不过, Redis 7.0 版本之前,如果在重写期间有写入命令,AOF 可能会使用大量内存,重写期间到达的所有写入命令都会写入磁盘两次。
- 使用 RDB 文件恢复数据,直接解析还原数据即可,不需要一条一条地执行命令,速度非常快。而 AOF 则需要依次执行每个写命令,速度非常慢。也就是说,与 AOF 相比,恢复大数据集的时候,RDB 速度更快。
AOF 比 RDB 优秀的地方:
- RDB 的数据安全性不如 AOF,没有办法实时或者秒级持久化数据。生成 RDB 文件的过程是比较繁重的, 虽然 BGSAVE 子进程写入 RDB 文件的工作不会阻塞主线程,但会对机器的 CPU 资源和内存资源产生影响,严重的情况下甚至会直接把 Redis 服务干宕机。AOF 支持秒级数据丢失(取决 fsync 策略,如果是 everysec,最多丢失 1 秒的数据),仅仅是追加命令到 AOF 文件,操作轻量。
- RDB 文件是以特定的二进制格式保存的,并且在 Redis 版本演进中有多个版本的 RDB,所以存在老版本的 Redis 服务不兼容新版本的 RDB 格式的问题。
- AOF 以一种易于理解和解析的格式包含所有操作的日志。你可以轻松地导出 AOF 文件进行分析,你也可以直接操作 AOF 文件来解决一些问题。比如,如果执行
FLUSHALL
命令意外地刷新了所有内容后,只要 AOF 文件没有被重写,删除最新命令并重启即可恢复之前的状态。
综上:
- Redis 保存的数据丢失一些也没什么影响的话,可以选择使用 RDB。
- 不建议单独使用 AOF,因为时不时地创建一个 RDB 快照可以进行数据库备份、更快的重启以及解决 AOF 引擎错误。
- 如果保存的数据要求安全性比较高的话,建议同时开启 RDB 和 AOF 持久化或者开启 RDB 和 AOF 混合持久化。